MS Implant for Narrow Ridge

- This implant is suitable for a narrow ridge, such as the lower anterior region.
- Fixture and abutment are combined to withstand chewing pressure and Micro thread design was adopted to increase chewing power.
- RBM surface was adopted for quick osseointegration.
- The shape and the size of abutment part were optimized to enable prosthetics without cutting.
- Temporary cap increases the convenience of manufacturing immediate prosthetics.
- Impression cap and lab analog enable a sophisticated restorative process.

Indications

- Abutment design for manufacturing dental ceramics in lower anterior teeth enabling immediate prosthetics placement.
- Narrow neck design for an increase of gingival stability.
- Micro thread design for an increase of initial and long-term stability.
- Threaded body design for an increase of self-tapping and initial stability.

MS Implant for Provisional

- This implant is for immediate provisional prosthetics for partially and completely edentulous patients.
- Neck can be bent for correct insertion.
- Titanium provisional cap and Lab analog enable easy manufacturing of provisional prosthetics.
- Provisional cap helps manufacturing prosthetics chair side.
- Neck design to corrects the direction
- Connection of Denture Driver which can be used when the neck is fractured
- Threaded body design to increases initial stability

Indications

- Provisional cap helps manufacturing prosthetics chair side.
- Neck design to corrects the direction
- Connection of Denture Driver which can be used when the neck is fractured
- Threaded body design to increases initial stability

Dimensions

- Ø2,5/3mm
- 10.1/16.5/17mm
- 3.1/4mm

Dimensions

- Ø1,8/2,5mm
- 10.7/19.5mm
- 3.0mm
● **MS Implant for Denture**

- Denture-type implant is for edentulous patients with narrow ridge or for those cases in which a standard implant is not possible.
- Denture micro thread in the upper distributes chewing pressure throughout bone structure making it suitable for an immediate prosthesis placement.
- Denture retainer and lab analog allows easy and convenient denture manufacturing.

Indications

- **Neck Diameter**
 - 2.3
 - 1.7
 - 2

- **Materials**
 - Cp Gr-5
 - Cp Gr-5
 - Cp Gr-4

<table>
<thead>
<tr>
<th>MS</th>
<th>Contrast</th>
<th>Competitor A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neck Diameter</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Materials</td>
<td>Cp Gr-5</td>
<td>Cp Gr-5</td>
</tr>
</tbody>
</table>

- **Purpose**
 - Combined fixture and abutment-shaped design enables implantation in a narrow ridge such as lower anterior region. Research on the effectiveness of narrow neck and safety of soft tissue is on going and new designs including platform switching have been invented. The effectiveness of narrow neck seems unclear. Therefore, fatigue stress and cycle-durability tests were conducted for each neck design.

- **Materials & Method**
 - Three test implants were made according to diameter and materials in neck areas. 5 test implants were manufactured per test. ISO14801 setting was arranged under the condition of 100N 30 Hz 200,000 cycles. Additionally fatigue tests were conducted.

- **Test Results**
 - All the test results show that MS implant is superior to others in terms of endurance and resistance against fatigue and torsion resistance.

● **Mechanical Drilling Power according to the Neck Design**

Purpose

- Combined fixture and abutment-shaped design enables implantation in a narrow ridge such as lower anterior region. Research on the effectiveness of narrow neck and safety of soft tissue is on going and new designs including platform switching have been invented. The effectiveness of narrow neck seems unclear. Therefore, fatigue stress and cycle-durability tests were conducted for each neck design.

Materials & Method

- Three test implants were made according to diameter and materials in neck areas. 5 test implants were manufactured per test. ISO14801 setting was arranged under the condition of 100N 30 Hz 200,000 cycles. Additionally fatigue tests were conducted.

- **Test Results**
 - All the test results show that MS implant is superior to others in terms of endurance and resistance against fatigue and torsion resistance.

- **Results of Fatigue Test**
 - (MS, Contrast, Competitor A)
Analysis of Initial Stability According to Body Design

Purpose
To analyze the internal stress diversion of mini implant (the diameter of fixture is less than 3mm) through FEA.

Materials & Method
Five categories of implants were developed in different settings of pitch, bone depth and micro thread. An analysis on internal stress diversion was done under the loading condition of 100N in 30°.

Test Results
Pull-out and Push-out test show that MS implant has better results compared with Sample A and Sample B. FEA results show that MS implant has the highest internal stress diversion.

MS Implant Components

MS Implant (Narrow ridge)

- A mini implant that is adequate for narrow space such as the mandibular anterior jaw
- One-body implant with micro thread design enhances the distribution of masticatory force
- RBM surface treatment enables fast osseointegration
- Optimized shape and size of abutment enables cutting-free prosthetic work
- Optimal design of body, thread, and drills to enhance initial bonding and bone penetration
- Packing unit : MS Implant (Narrow ridge)

Impression Cap (Narrow ridge)

- Use for precise impression work
- In case of non-modification of abutments : After taking an impression using an impression cap, make the prosthesis after creating a model using an analog
- In case of modification of abutment height only : After taking an impression using an impression cap, create a model using an analog and make the prosthesis by modifying the model shape according to the modification of abutment
- Packing unit : Impression cap

Test Results of Pull-out and Push-out test
Temporary Cap (Narrow ridge)

- Use for making temporary prosthesis
- One-touch locking design
- Packing unit: Temporary Cap (Narrow ridge)

Lab Analog (Narrow ridge)

- Make an MS Implant (narrow ridge) abutment of the oral cavity onto a working model
- Packing unit: Lab Analog

<table>
<thead>
<tr>
<th>Code</th>
<th>MSPTC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>MSPLA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MS Implant (Provisional)

- Use for making temporary prosthesis for completely or partially edentulous patients
- Neck designed for path compensation and intensity support
- Simple system to make temporary prosthesis using titanium provisional caps and lab analogs
- Provisional cap facilitating prosthetic work chair side
- Rectangular structure at the bottom of the neck facilitates easy removal of provisional implant
- Optimized design of body, thread, and drilling to enhance initial bonding and bone penetration
- Packing unit: MS Implant (Provisional)

Provisional Cap (Provisional)

- Use for making temporary prosthesis (Titanium)
- Packing unit: Provisional Cap

<table>
<thead>
<tr>
<th>Code</th>
<th>MSTPC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lab Analog (Provisional)

- Make an MS Implant (provisional) abutment of the oral cavity on a working model
- Packing unit: Lab Analog

<table>
<thead>
<tr>
<th>Code</th>
<th>MSTLA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MS Implant (Denture)

#2.5

<table>
<thead>
<tr>
<th>D</th>
<th>φ2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>MSD25102R MSD25104R</td>
</tr>
<tr>
<td>11.5</td>
<td>MSD25112R MSD25114R</td>
</tr>
<tr>
<td>13</td>
<td>MSD25132R MSD25134R</td>
</tr>
<tr>
<td>15</td>
<td>MSD25152R MSD25154R</td>
</tr>
</tbody>
</table>

#3.0

<table>
<thead>
<tr>
<th>D</th>
<th>φ3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>MSD30102R MSD30104R</td>
</tr>
<tr>
<td>11.5</td>
<td>MSD30112R MSD30114R</td>
</tr>
<tr>
<td>13</td>
<td>MSD30132R MSD30134R</td>
</tr>
<tr>
<td>15</td>
<td>MSD30152R MSD30154R</td>
</tr>
</tbody>
</table>

- Micro thread design for an increase of chewing power.
- Abutment design for manufacturing dental prosthetics without cutting.
- Connection of Denture Driver which can be used for lance drilling, drilling only the cortical bone is recommended; enables drilling up to the laser marking line depending on the surgeon’s work environment.

O-Ring Retainer Cap Set

- Use for making stud-type overdenture.
- Packing unit: Retainer Cap or O-ring.

Lab Analog (Denture)

- Make an MS Implant (denture) abutment of the oral cavity on a working model.
- Packing unit: Lab Analog.

HM Kit (MS Kit)

HM Implant Kit

- Kit Components (Basic)
 - Additive set
 - Machine Driver Long (Narrow Ridge)
 - #1.8mm Twist Drill Long
 - #1.8mm Twist Drill Short
 - Machine Driver Short (Denture)
 - #2.3mm Twist Drill Long
 - #2.3mm Twist Drill Short

- Kit Components (Optional)
 - Machine Driver Short (Narrow Ridge)
 - #1.8mm Twist Drill Short
 - #2.3mm Twist Drill Short

Discernment Torque Drivers

- Narrow Ridge Type: No hole on the head.
- Denture Type: A hole on the head.

Drill for MS Implant

- Lance Drill
- Twist Drill

Drill Torque

- 1.5mm Lance Drill: 1.5
- 1.8mm Twist Drill Long: 1.8
- 1.8mm Twist Drill Short: 1.8
- 2.3mm Twist Drill Long: 2.3
- 2.3mm Twist Drill Short: 2.3

- Same specification as implant length for easy identification; laser marking on 8/10/11.5/13/15mm. For lance drilling, drilling only the cortical bone is recommended; enables drilling up to the laser marking line depending on the surgeon’s work environment.
This implant is suitable for a narrow ridge, such as the lower anterior region. Fixture and abutment are combined to withstand chewing pressure and Micro thread design was adopted to increase chewing power. RBM surface was adopted for quick osseointegration. The shape and the size of abutment part were optimized to enable prosthetics without cutting. Temporary cap increases the convenience of manufacturing immediate prosthetics. Impression cap and lab analog enable a sophisticated restorative process.

Indications

- Temporary Cap
- Lab Analog

Abutment design for manufacturing dental ceramics in lower anterior teeth enabling immediate prosthetics placement.

- Threaded body design for an increase of self tapping and initial stability
- Narrow neck design for an increase of gingival stability
- Micro thread design for an increase of initial and long-term stability.

MS Implant for Narrow Ridge

Driver for Narrow Ridge & Provisional Type

- Torque Driver
- Machine Driver

Driver for Denture type

- Torque Driver
- Machine Driver

Gauge for MS Implant

- Depth Gauge
- Parallel Pin

Torque Handle

- Depth Gauge
- Parallel Pin

Driver Separator

- Code MSDS
- Code MSTH

- Special-purpose driver for MS Implant (Narrow Ridge and Provisional)
 - The triangle mark is used by aligning the driver with the implant cross section

- Special-purpose driver for MS Implant (denture)
 - The triangle mark is used by aligning the driver with the implant cross section

- Depth gauge
 - Left : For depth checking upon drilling
 - Right : Use for MS implant bending

- The parallel pin is used for path checking upon drilling.

- Code MSDS
- Code MSTH

- Use for manual torque after connecting to the connected part of a torque driver

- In case a driver is stuck during implantation, the Driver Separator helps remove the driver based on the lever principle (inserting Driver Separator into the driver grooves)

Warnings & Procedures

How to separate driver when pinching occurs during insertion

- Insert Driver separator into the hole and lift up the driver by Lever Principle

How to recover Provisional Type Path

- Correct the Path by using Depth Gauge. Fracture of Implant Neck can be occurred in excessive bending.

How to remove implant when fracture occurs in Provisional Type

- When the neck fractures.
- Connect denture driver to provisional implant. Rotate the driver counter-clockwise to remove

Provisional Type implant with fractured neck

Denture Driver
Warnings & Procedures

1. Push the dotted line at the top of the package with hands. The package includes a MS implant, manuals, and chart stickers.

2. The implant is sterilized before it is placed into the blister package. Diameter, length, product code number and Lot number are written on the back of the package.

3. Remove the cap and the abutment part is exposed. Align the arrow mark on the driver with the cross section of the implant when you connect it. If a secure connection is not made, try again.

4. Take the implant out of the ampule and move it cautiously as the picture shows. Avoid contact with any objects and dropping the implant.

Product Information

- The laser markings indicate the length of implant

- Diameter of implant and final drill

<table>
<thead>
<tr>
<th>Final Drill</th>
<th>Implant Diameter</th>
<th>Interference</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø1.5</td>
<td>Ø1.8</td>
<td>-</td>
<td>Drilling the length of cortical bone</td>
</tr>
<tr>
<td>Ø1.5-1.8</td>
<td>Ø2.5</td>
<td>0.35-0.5</td>
<td>Drilling the length of the implant</td>
</tr>
<tr>
<td>Ø1.8-2.5</td>
<td>Ø3.0</td>
<td>0.35-0.6</td>
<td>Drilling the length of the implant</td>
</tr>
</tbody>
</table>

** The harder structure is, the larger the diameter of final drill should be.

- Driver selection guide according to location

<table>
<thead>
<tr>
<th>Location</th>
<th>How to use</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>In case of high crown (Anterior teeth)</td>
<td>Engine</td>
<td>Long Type Driver</td>
</tr>
<tr>
<td></td>
<td>Hand</td>
<td>Long Type Driver</td>
</tr>
<tr>
<td>In case of narrow occlusal space (Posterior teeth)</td>
<td>Engine</td>
<td>Short Type Driver</td>
</tr>
<tr>
<td></td>
<td>Hand</td>
<td>Short Type Driver</td>
</tr>
</tbody>
</table>

* Recommendations : 25 rpm, 30Ncm
(Provisional Ø1.8 : 25Ncm)
Recommended Surgical Procedure

MS Implant (φ 2.5 / φ 3.0) - Recommended insertion torque : 30Ncm

- Check vertical height, and path after MS implant insertion. (Remove upper part of MS implant, using irrigation, if adjustment is necessary.)
- Fabricate and place provisional prosthetics by using temporary cap.

Step 2: Impression & Working Cast

1. Place an impression cap on the implant.
2. Take an impression
3. Send impression and lab analog to lab for manufacturing of prosthesis

When the abutment is modified.
- Take a direct impression.
- Send to lab for manufacturing of prosthesis

When only abutment height was adjusted.
- Place an impression cap on implant.
- Take an impression, send impression and lab analog to lab for manufacturing of prosthesis

MS Implant Prosthetic Procedure for Narrow Ridge

- Make adjustment considering length of upper marking line, and accurate prosthetics manufacturing using lab analogue is possible.
- Shaping individual margin is possible in the 3mm margin area of the MS implant.

- In Provisional Type, insert the implant by using Torque Handle(MSTH), otherwise, fracture of neck may be occurred when more than 40Ncm of torque value is reached.

Recommended Surgical Procedure

MS Implant (φ 1.8) - Recommended insertion torque : 25Ncm

Caution: In Provisional Type, insert the implant by using Torque Handle(MSTH), otherwise, fracture of neck may be occurred when more than 40Ncm of torque value is reached.

Recommended Surgical Procedure

MS Implant (φ 1.8) - Recommended insertion torque : 25Ncm

- Check vertical height, and path after MS implant insertion. (Remove upper part of MS implant, using irrigation, if adjustment is necessary.)
- Fabricate and place provisional prosthetics by using temporary cap.

Step 2: Impression & Working Cast

1. Place an impression cap on the implant.
2. Take an impression
3. Send impression and lab analog to lab for manufacturing of prosthesis

When the abutment is modified.
- Take a direct impression.
- Send to lab for manufacturing of prosthesis

When only abutment height was adjusted.
- Place an impression cap on implant.
- Take an impression, send impression and lab analog to lab for manufacturing of prosthesis

Step 3: Setting

Place prosthesis in mouth check occlusion

Caution: In Provisional Type, insert the implant by using Torque Handle(MSTH), otherwise, fracture of neck may be occurred when more than 40Ncm of torque value is reached.
This implant is suitable for a narrow ridge, such as the lower anterior region. Fixture and abutment are combined to withstand chewing pressure and Micro thread design was adopted to increase chewing power. RBM surface was adopted for quick osseointegration. The shape and the size of abutment part were optimized to enable prosthetics without cutting. Temporary cap increases the convenience of manufacturing immediate prosthetics. Impression cap and lab analog enable a sophisticated restorative process.

Indications

- Temporary Cap
- Lab Analog

Abutment design for manufacturing dental ceramics in lower anterior teeth enabling immediate prosthetics placement. Threaded body design for an increase of self tapping and initial stability. Narrow neck design for an increase of gingival stability. Micro thread design for an increase of initial and long-term stability.

MS Implant for Provisional

This implant is for immediate provisional prosthetics for partially and completely edentulous patients. Neck can bent for correct insertion. Titanium provisional cap and Lab analog enable easy manufacturing of provisional prosthetics. Provisional cap helps manufacturing prosthetics chair side. Neck design to corrects the direction Connection of Denture Driver which can be used when the neck is fractured. Threaded body design to increases initial stability.

Indications

- Impression Cap
- Lab Analog

Provisional cap helps manufacturing prosthetics chair side. Neck design to corrects the direction Connection of Denture Driver which can be used when the neck is fractured. Threaded body design to increases initial stability.

MS Implant Prosthetic Procedure for Provisional

1. Manufacture a temporary prosthesis on the model.
2. Insert Provisional Implant between the implants.
3. Check and control the Path of Provisional Implant.
4. Confirm the space where Provisional Cap can be inserted on the temporary prosthesis.
5. Connect Provisional Cap in the mouth.
6. After covering with a Rubber Dam, connect Provisional Cap and temporary prosthesis using Resin.
7. Remove the surplus resin and adjust occlusion after Resin hardens. Set the temporary prosthesis using Temporary Cenment.

MS Implant Prosthetic Procedure for denture

A. For new denture

1. Insert O-ring in the Retainer, place the retainer on the Ball Head exposed in the mouth and take an impression.
2. Connect Lab Analog to the retainer in the impression
3. After manufacturing the working model, remove the Retainer from the impression according to the general rules.
4. Using the completed working model, manufacture Denture according to the general rules.
5. Check the insertion points of the denture
6. Push the O-ring through the rubber dam. Insert the o-ring into the retainer. Attach the retainer to the o-ring abutment.
7. Inject Resin into the Hole formed on Denture and remove the surplus after Resin has hardened.
8. Check the bearing and occlusion status.

Step 1

Manufacture a temporary prosthesis on the model.

Step 2

Insert Provisional Implant between the implants.

Step 3

Check and control the Path of Provisional Implant.

Step 4

Confirm the space where Provisional Cap can be inserted on the temporary prosthesis.

Step 5

Connect Provisional Cap in the mouth.

Step 6

After covering with a Rubber Dam, connect Provisional Cap and temporary prosthesis using Resin.

Step 7

Remove the surplus resin and adjust occlusion after Resin hardens. Set the temporary prosthesis using Temporary Cenment.
MS Implant Prosthetic Procedure for denture

B. Using existing denture

Step 1
Considering Path, insert MS Implant according to the set surgery procedure.

Step 2
After checking the location of insertion, form the Hole on the existing denture.

Step 3
Connect Rubber Dam and then connect Ball Head by inserting O-Ring with weak bearing into the Retainer.

Step 4
Inject Resin after setting the existing denture formed Hole. Remove the surplus part after Resin has hardened.

Step 5
Check the bearing and occlusion status.

Clinical Application using MS Implant

MS Narrow Ridge
- Patient Condition: narrow ridge
- Final Drill: Ø 1.8
- Implant: Ø 2.5 x 13.0mm
- Bone Type: 03
- Torque Value: 17Ncm
This implant is suitable for a narrow ridge, such as the lower anterior region. Fixture and abutment are combined to withstand chewing pressure and Micro thread design was adopted to increase chewing power. RBM surface was adopted for quick osseointegration. The shape and the size of abutment part were optimized to enable prosthetics without cutting. Temporary cap increases the convenience of manufacturing immediate prosthetics. Impression cap and lab analog enable a sophisticated restorative process.

Indications

- **RBM**
 - Temporary Cap
 - Lab Analog

Abutment design for manufacturing dental ceramics in lower anterior teeth enabling immediate prosthetics placement. Threaded body design for an increase of self-tapping and initial stability. Narrow neck design for an increase of gingival stability. Micro thread design for an increase of initial and long-term stability.

MS Narrow Ridge

- **Patient Condition:**
 - No more increase in bone volume
- **Final Drill:** ø 1.8
- **Implant:** ø 2.5 x 13.0mm
- **Bone Type:** D3
- **Torque Value:** 17 / 15Ncm

Clinical Application using MS Implant

- **Clinical Application using MS Implant**

MS Narrow Ridge

- **Patient Condition:**
 - Tooth extraction 2 weeks before surgery
- **Final Drill:** ø 1.8
- **Implant:** ø 2.5 x 13.0mm
- **Bone Type:** D3

Clinical Application using MS Implant
This implant is suitable for a narrow ridge, such as the lower anterior region. Fixture and abutment are combined to withstand chewing pressure and Micro thread design was adopted to increase chewing power. RBM surface was adopted for quick osseointegration. The shape and the size of abutment part were optimized to enable prosthetics without cutting. Temporary cap increases the convenience of manufacturing immediate prosthetics. Impression cap and lab analog enable a sophisticated restorative process.

Indications
- (RBM)
- Temporary Cap
- Lab Analog

Abutment design for manufacturing dental ceramics in lower anterior teeth enabling immediate prosthetics placement.
- Threaded body design for an increase of self tapping and initial stability
- Narrow neck design for an increase of gingival stability
- Micro thread design for an increase of initial and long-term stability.

This implant is for immediate provisional prosthetics for partially and completely edentulous patients. Neck can bent for correct insertion. Titanium provisional cap and Lab analog enable easy manufacturing of provisional prosthetics. Provisional cap helps manufacturing prosthetics chair side. Neck design to corrects the direction Connection of Denture Driver which can be used when the neck is fractured.
- Threaded body design to increases initial stability

Indications
- MS Implant for Provisional

Clinical Application using MS Implant

Washing and Sterilization

How to maintain & Store surgical instruments
1. Right after procedure, surgical instruments should be soaked in sterilizing solution to prevent hardening of the blood. Wash with running or distilled water to completely remove blood and other remaining objects.
2. Dry with paper towel or heater. Put the instruments in sterilizing kit, and sterilize them for 15 minutes at 135° in Autoclave. Keep the sterilized instruments dry and store.

Soak surgical instruments in sterilization solution and wash in distilled or running water, Remove water and disinfect for 15 minutes at 135° in Autoclave.

Remove water and disinfect for 15 minutes at 135° in Autoclave.

MS Narrow Ridge
- **Patient Condition:** No more increase in bone volume
- **Final Drill:** ∅1.8 / 2.3
- **Implant:** ∅2.5 x 13.0mm ∅3.0 x 13.0mm
- **Bone Type:** D3
Surgical Procedure

The operator must check the following items before starting the surgery.

Patient’s condition
- Sufficient bone volume and quality prior to treatment
- Smoking and/or drinking habits
- Status of oral hygiene
- Patient’s understanding of implant surgery
- Detailed health status
- Masticatory pattern and habit
- Psychological state

Treatment Plan
Discuss treatment options with your patient. Include the pros and cons of each treatment as well as the procedure involved.

Medical Diagnosis
Check the patient’s health history before implant surgery. Discuss the treatment plan and health history with the patient’s primary care physician before performing surgery.

Pay Particular Attention to the Following during an Implant Procedure
- Improper upper/lower posterior height
- Extremely poor bone quality
- Ischemic heart patient (angina, myocardial infarction)
- Patient’s distrust of implant treatment
- Improper lower anterior width
- Congenital or acquired heart conditions
- High blood pressure

How to Maintain Surgical KIT

① During surgery, be sure to keep used tools in saline or distilled water.
② Rinse tools with distilled or running water to remove all blood and debris.
③ Alcohol wash all tools used in surgery
 Caution: Do NOT use hydrogen peroxide
 “Exposure to hydrogen peroxide may cause discoloration to laser markings and/or TiN coating
④ Remove all moisture with a dry cloth or warming fan
⑤ Replace dried tools into the Kit case
 (Refer to the color-coding for easy placement.)
⑥ Autoclave Kit for 15 minutes at 132, then store at room temperature.

Precautions
Immediately after surgery separate, wash and store all tools. Re-sterilize Kits prior to surgery (132 for 15 minutes) All drills and drivers are recommended for up to 50 uses.